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ABSTRACT

In the field of eye tracking, scanpath analysis can reflect the sequential and temporal properties of the cognitive process. However, the advantages of
scanpath analysis have not yet been utilized in the study of risky decision making. We explored the methodological applicability of scanpath analysis
to test models of risky decision making by analyzing published data from the eye-tracking studies of Su et al. (2013); Wang and Li (2012), and Sun,
Rao, Zhou, and Li (2014). These studies used a proportion task, an outcome-matched presentation condition, and a multiple-play condition as the
baseline for comparison with information search and processing in the risky decision-making condition. We found that (i) the similarity scores of
the intra-conditions were significantly higher than those of the inter-condition; (ii) the scanpaths of the two conditions were separable; and (iii) based
on an inspection of typical trials, the patterns of the scanpaths differed between the two conditions. These findings suggest that scanpath analysis is
reliable and valid for examining the process of risky decision making. In line with the findings of the three original studies, our results indicate that
risky decision making is unlikely to be based on a weighting and summing process, as hypothesized by the family of expectation models. The

findings highlight a new methodological direction for research on decision making. Copyright © 2016 John Wiley & Sons, Ltd.

Additional supporting information may be found in the online version of this article at the publisher’s web-site.
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INTRODUCTION

Decision making under risk is vital to human survival and
development. How people make risky choices is a compel-
ling question facing scientists today. To solve this puzzle, in
recent years, new techniques have been used to study the
complex cognitive activity involved in decision making.
Among these techniques, eye tracking has been shown to
be successful (Glockner & Herbold, 2011; Krajbich, Armel,
& Rangel, 2010; Krajbich & Rangel, 2011; Shi, Wedel, &
Pieters, 2013; Su et al., 2013). Given that eye movements
provide abundant information about underlying cognitive
processes, this technology is particularly useful for studying
complex cognitive activities that require real-time visual
perception, such as decision making. Moreover, because
eye tracking is a passive observation technology, re-
searchers can study cognitive processes without interfering
with subjects’ behavior (Hayhoe & Ballard, 2005). Most
previous studies using eye tracking to study decision
making analyzed data on local details (e.g., fixation and
saccade), neglecting to some extent the sequential and
temporal properties of the cognitive processes underlying
decision making (Day, 2010; Glockner & Herbold, 2011;
Suetal., 2013; Sun et al., 2014; Wang & Li, 2012). Analyz-
ing the sequential and temporal properties of eye move-
ments, which can be represented by the scanpath, can lead
to a better understanding of the decision-making process
(Harte, Westenberg, & van Someren, 1994). In the present
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study, we attempted to assess the applicability of scanpath
analysis to examining the processes of risky decision-making
models.

Risky decision-making models
In the study of decision making, characteristics of choice are
determined by general rules (Stevenson et al., 1990) that
classify various decision models. Stevenson et al. (1990) or-
ganized a variety of preferential choice rules by crossing the
following three factors: (i) Compensatory/non-compensatory
rule. The compensatory rule involves the processing of all
relevant information about the available alternatives and the
explicit consideration of the tradeoffs among values. The
non-compensatory rule uses information in a more limited
and often highly selective fashion and avoids tradeoffs
(Payne & Bettman, 2004); (ii) Holistic/dimensional rule.
The holistic rule means that primary information processing
is alternative based; that is, multiple attributes of a single
option are processed before another option is considered. The
dimensional rule, which is also referred to as attribute based,
means that the values of several options for a single attribute
are examined before information on another attribute is consid-
ered (Payne & Bettman, 2004); (iii) Deterministic/stochastic
rule. The deterministic rule postulates a binary preference
relationship that is either true or false for any pair of actions,
whereas the stochastic rule postulates a probability function
that maps each pair of actions into a closed interval
(Busemeyer & Townsend, 1993).

A majority of existing risky decision-making models can be
unambiguously classified by the aforementioned factors. His-
torically, mainstream theories of decision making under risk
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have followed a compensatory, holistic, and deterministic rule.
Based on the hypothesis of these theories, when making a risky
choice, people weigh each outcome by its probability and then
sum all the risky outcomes to assign an overall value (expecta-
tion) to each option. Finally, they select the option that offers
the highest overall expectation (Glockner & Herbold, 2011;
Kahneman & Tversky, 1979, 1990; Tversky & Kahneman,
1992). The representative models are expected value theory
(EV; Pascal, 1670), expected utility theory (EU; von Neumann
& Morgenstern, 1947), subjective expected utility theory
(SEU; Edwards, 1954), prospect theory (PT; Kahneman &
Tversky, 1979), and cumulative prospect theory (CPT; Tversky
& Kahneman, 1992). We therefore identify the “compensatory,
holistic, and deterministic”” decision-making process that these
models assumed as a weighting and summing process and use
this definition throughout the remainder of this paper. Not all
compensatory models contain assumptions about deliberate
computation process. For example, parallel constraint satisfac-
tion models (PCS; Glockner & Betsch, 2008; Holyoak & Si-
mon, 1999) predict an approximately weighted integration of
probabilities and subjective utilities without assuming that in-
dividuals calculate weighted sums. Some recent models, such
as decision field theory (DFT; Busemeyer & Townsend,
1993) and the drift diffusion model (DDM; Ratcliff & Rouder,
1998; Krajbich & Rangel, 2011), follow the compensatory and
stochastic rule. These compensatory models do not incorporate
the assumption of a deliberate computation process. For exam-
ple, the DDM hypothesizes that decisions are made by accu-
mulating stochastic information over time until the net
evidence in favor of one option exceeds a pre-specified thresh-
old (Krajbich & Rangel, 2011). There are also models that fol-
low the non-compensatory rule and assume that people rely on
only one (or a few) key dimension(s) rather than integrating in-
formation from all dimensions of an option to make a decision
(Brandstitter, Gigerenzer, & Hertwig, 2006; S. Li, 2004;
Thorngate, 1980). For example, the equate-to-differentiate
model suggests that when making risky choices, people seek
to “equate” the less-significant differences between options in
either the best or worst possible payoff dimensions, leaving
the greater one-dimensional difference to be differentiated as
the determinant of the final choice (Li, 2004; Li & Xie, 20006).
According to the priority heuristic model (Brandstitter et al.,
2006), a decision maker will sequentially compare
the minimum outcomes, the probabilities of the minimum
outcomes, and the maximum outcomes of the two options to
make a decision. However, the priority heuristic was reported
in some studies to be unsuitable as a general model of risky
choice (e.g., Birnbaum & LaCroix, 2008; Glockner & Betsch,
2008; Hilbig, 2008; Koop & Johnson, 2013).

Behavioral experiments and process-tracing methods have
been applied to examine risky-decision models (Brandstitter
& Gussmack, 2012; Glockner & Herbold, 2011; Su et al.,
2013). Behavioral experiments use outcome-based techniques,
manipulate input variables, and build statistical models to draw
inferences about the final decision (Schulte-Mecklenbeck,
Kiihberger, & Ranyard, 2011a). Behavioral experiments have
provided ample evidence for risky-decision-model examina-
tion. However, different models may predict the same outcome
or preference despite potential differences in the underlying
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cognitive processes (Johnson, Schulte-Mecklenbeck, &
Willemsen, 2008). Thus, a good-model-fit result does not
exclude the possibility that the large majority of participants
(e.g., in the decision tasks of two gambles, Glockner &
Herbold, 2011; or in affect-poor problems, Suter, Pachur, &
Hertwig, 2015) who are well captured by CPT relied on non-
expectation-based calculus rather than expectation-based
calculus. It is difficult to justify decision models without exam-
ining the underlying process, even when the outcome data are
correctly predicted. In contrast to behavioral experiments, trac-
ing methods directly examine the processes underlying risky
choice and provide process data (in addition to outcome data)
for testing risky-decision models (Payne, Bettman, & Johnson,
1993; Payne & Venkatraman, 2010; Schulte-Mecklenbeck
et al., 2011a). The process-tracing methods allow for the con-
current mapping of explicit and implicit processes and can
overcome the limits of behavioral experiments in motivation,
awareness, and opportunity by tapping implicit processes
(Schulte-Mecklenbeck, Kiihberger, & Ranyard, 2011b). As a
result, the process data are richer than the outcome data and
can therefore provide empirically valuable source evidence of
the explanatory psychological mechanisms of decision pro-
cesses (Payne & Venkatraman, 2010; Payne et al., 1993;
Schulte-Mecklenbeck et al., 2011b; Schulte-Mecklenbeck
et al., 2011a).

Eye-tracking methods and risky decision making
Currently, tracing technologies are used in many innovative
ways, including functional magnetic resonance imaging
(fMRI), event-related potential (ERP), mouse tracking, and
eye tracking, to study people’s information processing during
decision making (Dshemuchadse, Scherbaum, & Goschke,
2013; Glockner & Herbold, 2011; Krajbich et al., 2010;
Pachur, Hertwig, Gigerenzer, & Brandstitter, 2013; Rao, Li,
Jiang, & Zhou, 2012; Rao et al., 2011, 2013; Scarpa, Zanoli,
Bruschi, & Naspetti, 2013; Su et al., 2013). Among these tech-
nologies, eye tracking has been shown to be useful and reliable
for decision-making research (Day, 2010; Glockner &
Herbold, 2011; Krajbich & Rangel, 2011; Krajbich et al.,
2010; Orquin & Mueller Loose, 2013; Su et al., 2013; Sun
et al., 2014; Wang & Li, 2012). During decision-making, we
usually move our eyes to acquire necessary visual information.
Because there is a close relationship between information ac-
quisition (through the eyes) and information processing (by
the brain), eye movements provide a large amount of informa-
tion about the underlying cognitive processes (Just & Carpenter,
1976; Day, 2010; Orquin & Mueller Loose, 2013). The fixation
durations reflect the processing duration, the fixation positions
reflect which part of the visual world is needed for decision mak-
ing, and the order of inspection reflects the order of processing
(Rayner, 2009). Indeed, eye tracking has been successfully used
in many decision-making studies, such as value-based choice
(binary choice, Krajbich & Rangel, 2011; ternary choice,
Krajbich et al., 2010), multi-attribute decision making (Day,
2010), and online consumer decision making (Shi et al., 2013).
In particular, a series of eye-tracking studies in risky deci-
sion making has examined and compared the three aforemen-
tioned classifications of decision models. In these studies,
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models were examined by testing the extent to which they
could correctly predict people’s choice behaviors and the
characteristics of their eye movements, such as the fixation
duration and position (Glockner & Herbold, 2011; Su et al.,
2013; Sun et al., 2014; Wang & Li, 2012). For example,
Glockner and colleagues (Fiedler & Glockner, 2012;
Glockner & Herbold, 2011) tested the predictions of typical
compensatory models (i.e., CPT, DFT, and PCS) and a
non-compensatory model (i.e., PH). Their results showed
that only PCS could account for risky decision making on
both an outcome level and a processing level. Su et al.
(2013) compared eye movements when participants per-
formed a risky-choice task and when they performed a task
that required weighting and summing processes (the propor-
tion task) to test whether the participants used a weighting
and summing process during risky decision making. Their
findings indicated that the eye-movement patterns were dif-
ferent for these two tasks, suggesting that participants were
not likely to use a weighting and summing process to make
risky choices. Similarly, Wang and Li (2012) showed that
eye movements differed when participants made choices ac-
cording to their own rules or according to the imposed EV
rule. Given that decision makers behave more in accordance
with the predictions of EV theory in multiple-play situations
(Colbert, Murray, & Nieschwietz, 2009; DeKay, Hershey,
Spranca, Ubel, & Asch, 2006; Keren, 1991; Klos, Weber,
& Weber, 2005; Langer & Weber, 2001; S. Li, 2003;
Redelmeier & Tversky, 1992; Wedell & Bockenholt,
1994), Sun et al. (2014) compared single-play and multi-
ple-play risky choices using an eye-tracking method and sug-
gested that eye-movement patterns are distinctly different
between these two types of risky-choice tasks.

It should be noted that the aforementioned studies usually
use local eye-movement information, such as fixation position
and duration. However, eye-tracking analyses that depend on
the frequency or duration of fixations or saccades neglect the
fact that saccades and fixations are fundamentally sequential
(one fixation/saccade is followed by another; Cristino, Mathot,
Theeuwes, & Gilchrist, 2010). This neglect is not justified
because most risky decision-making models assume a sequen-
tial and dynamic process of information searching and evaluat-
ing (Brandstitter et al., 2006; Kahneman & Tversky, 1979;
Tversky & Kahneman, 1981). Moreover, analyzing only local
eye movement measures would prevent us from directly
inspecting and obtaining a complete picture of the decision-
making processes.

Scanpath analysis of eye movements

To overcome the aforementioned limits, scanpath analysis
can be used to capture the dynamic and sequential nature of
eye movements during risky choices. During cognition-
phase viewing, individuals generate a relatively fixed “path”.
This path, which is characteristic of a given participant view-
ing a given pattern, is called a “scanpath” (Noton & Stark,
1971a). Scanpaths are an important tool for studying the se-
quential properties of eye movements, which can reflect the
temporal and spatial dynamics of the underlying cognitive
processing (Noton & Stark, 1971a).

Copyright © 2016 John Wiley & Sons, Ltd.
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The classical “scanpath theory” was proposed by Noton and
Stark to explain the representative nature of eye-movement
patterns (Noton & Stark, 1971b). The hypothesis is that an inter-
nalized cognitive model drives scanpaths, which operate in a
top-down fashion and are stable across multiple exposures.
Scanpaths generally reflect the order in which visual stimuli
are processed in the brain (Altmann & Kamide, 2009; Foulsham
& Underwood, 2009; Henderson & Hollingworth, 1999; Loftus
& Mackworth, 1978; Watson, Brennan, Kingstone, & Enns,
2010). Scanpath is regulated by tasks. When participants viewed
the same picture, scanpaths were different when participants
were asked to do different tasks (Yarbus, 1967; Zangemeister,
Sherman, & Stark, 1995). Although scanpaths are different for
different tasks, they are relatively stable across multiple expo-
sures for the same task. The research on consumers’ visual atten-
tion to repeated print advertisements by Pieters, Rosbergen, and
Wedel (1999) was the first to statistically demonstrate the stabil-
ity of scanpaths across repeated exposures, which is likely due to
their storage in memory (Underwood, Foulsham, & Humphrey,
2009) or a result of bottom—up factors that remain the same
across repeated exposures (Foulsham & Kingstone, 2013).
Therefore, when people perform two different tasks, comparing
the similarities between scanpaths can indicate the similarity of
the underlying processes in these tasks.

Scanpath theory has been used successfully in studying
complex cognitive tasks, such as mathematical problem solv-
ing (Holmgqvist et al., 2011a), natural scene viewing (Bradley,
Houbova, Miccoli, Costa, & Lang, 2011), affective picture
viewing (Ni et al., 2011), reading (Engbert & Kliegl, 2001;
X. Li, Logan, & Zbrodoff, 2010), the viewing of advertise-
ments (Pieters et al., 1999), and multi-attribute decision
making (Day, 2010). In particular, scanpath data, which in-
herently contain sequential information, can better reflect
the dynamic decision-making process and have been previ-
ously used in decision research (Day, 2010). Day (2010)
attempted to use scanpath analysis to study the strategies
of multi-attribute decision-making. He trained participants
to use different strategies for decision making and com-
pared the scanpath patterns corresponding to these strate-
gies. He found that the scanpaths for the same strategy
had the closest resemblance and demonstrated that
scanpaths can be used to identify the underlying strategies
of multi-attribute decision making.

To the best of our knowledge, no previous studies have
used scanpath analysis to examine risky decision-making
models when participants make a spontaneous decision.

Current research

In this paper, we attempt to assess the methodological ap-
plicability of scanpath analysis to examining risky deci-
sion-making models. Given that the weighting and
summing process hypothesized by the family of expecta-
tion models (such as EV, EU, SEU, and PT) provides a
definite and explicit prediction regarding the process and
outcome of decision making, the present research focuses
on these “testable” decision models. We analyzed
scanpaths in the data from three published eye-tracking
studies by Su et al. (2013); Wang and Li (2012), and
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Gap penalty = 0 Scanpath 1
Scanpath 2

Alignment score

Score = 1+(-1)+0=0

Figure 1. An example for demonstrating the effect of the gap penalty in comparing two scanpaths

Sun et al. (2014). In these studies, a proportion task, an
outcome-matched presentation condition, and a multiple-
play condition served as the baseline for comparison with
a probability task, an outcome-crossed presentation condi-
tion, and a single-play condition, respectively. Hereafter,
we refer to the two tasks/conditions in each dataset as
“Condition A” (the baseline, i.e., a proportion task, an
outcome-matched presentation condition, and a multiple-
play condition) and “Condition B” (i.e., a probability task,
an outcome-crossed presentation condition, and a single-
play condition)).

In addition, we aimed to develop an objective and quanti-
tative method to identify a typical scanpath pattern to visual-
ize the decision-making process. We hope that the typical
scanpath pattern can represent the crux of a decision-making
process without trivial and redundant information and allow
us to determine directly and rapidly whether two decision-
making processes differ.

METHOD

Similarity of Scanpaths
To compare the scanpath patterns for different conditions, we
first computed the similarity score of these scanpaths. We used
ScanMatch toolbox (Cristino et al., 2010), which is based on
the Needleman—Wunsch (N-W) algorithm (Needleman &
Wunsch, 1970), to measure the similarities between scanpaths.
The N-W algorithm is suitable for decision-making research
because it allows researchers to specify the optimal scoring
parameters for a given situation with a flexible scoring scheme
(Day, 2010). Compared with traditional string-editing algo-
rithms, the N-W algorithm can take the fixation length and
fixation duration into account and can edit the setup of the
stimulus regions of interest (ROIs) being compared.

The main steps for computing and comparing similarity
scores are as follows:

Step 1. Pre-process the fixation data

The fixation data were used to create scanpaths. Fixation du-
rations that were shorter than 50 ms (Nuthmann & Kliegl,
2009) and outside the ROIs defined by the previous studies
were removed. Trial decision durations shorter than 200 ms
were considered anticipation (Su et al., 2013) and were not
included in the analysis.

Step 2. Create scanpaths for all conditions

For each participant, the scanpaths were created by letter
sequences of ROIs. We first defined a series of non-
overlapping rectangular ROIs to represent different areas
in the display. Each ROI covered an area that displayed

Copyright © 2016 John Wiley & Sons, Ltd.

an attribute of options (i.e., outcome and probability; see
Figure 3 for an example of these ROIs). Each ROI was
given a unique label (e.g., aA), and the fixation in the
ROI was assigned the same label. Finally, a letter string
was constructed for each trial of all tasks/conditions so
that the order of labels in the string represented the order
in which the ROI were fixated when participants com-
pleted the trial (e.g., aFaFaHaG).

Step 3. Compute the alignment score of scanpath pairs for
intra-conditions/inter-conditions

The alignment scores are for aligning two labels or the
label and a gap in the sequences of the scanpaths. Using
the N—W algorithm to ensure that the alignment provided
the highest score (Cristino et al., 2010), the pairs
of scanpaths of all intra-conditions/inter-conditions, that
is, within Condition A (i.e., intra-condition A), within
Condition B (i.e., intra-condition B), and between condi-
tions (i.e., the inter-condition), were aligned. Two main
parameters must be set in this algorithm: the alignment
score of labels and the gap penalty. We used three princi-
ples to calculate the three types of alignment scores between
two sequences in each intra-condition/inter- condition:

When two labels at the same position of two strings were
matchedthe alignment score at that position was 1.When two la-
bels (i.e., ROIs) at the same position of two strings were differ-
ent, the alignment score at that position was -1.The gap penalty
represented the score for aligning any element in a sequence
with a gap. To minimize the variance of the scanpath length
from the similarity score, we set the gap penalty as O.

On the principle of parsimony, we used the aforementioned
parameter combination.! Other parameter combinations were
also examined (Supplementary Material D). With these princi-
ples in mind, the alignment scores could reflect the relationship
between the attributes of options in the risky-choice paradigm
used in our study. That is, the alignment score for two labels
belonging to the same attributes and the same option is 1.
Meanwhile, the alignment score for two labels belonging to
different attributes or different options is -1. Figure 1 illustrates
an example of calculating the alignment score between two
scanpaths (Scanpath 1=aAaD, Scanpath 2=aAaCaB). In
these two scanpaths, the alignment score of aA with aA is 1,
that of aD with aC is -1, and that of aB with a gap (space
between two labels) is 0.

'To take fixation duration into account, the ScanMatch algorithm also intro-
duced temporal binning into the scanpath sequence. During pre-testing, we
found the temporal binning had less effect on the similarity score; thus, we
omitted this parameter.
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Step 4. Compute and compare the average similarity score
for intra-conditions/inter-conditions

The similarity score of two scanpaths was obtained by
normalizing the aforementioned alignment scores using
the method of Cristino et al. (2010). As the similarity score
increased, the two scanpaths became more similar. Then,
we could compute the average similarity score of all
intra-conditions/inter-conditions. We applied a multi-level
model (MLM) to compare the scores on a group level. If a
different cognitive process is used in different conditions,
the inter-condition similarity scores should be lower than
the intra-condition scores (Mathot, Cristino, Gilchrist, &
Theeuwes, 2012). Finally, to cross-validate the findings from
MLM analyses, we applied a standard hierarchical clustering
technique called complete linkage to further analyze
scanpath sequences. Clustering refers to a broad set of
techniques for clustering clusters, or finding subgroups, in
a dataset (James, Witten, Hastie, & Tibshirani, 2013). The
complete linkage algorithm was selected considering that this
method tends to produce tight clusters of similar cases and
minimizes the possible disturbing effect of outliers while clus-
tering (Feldt, Waddell, Hetrick, Berke, & Zochowski, 2009).
As hypothesized, in each dataset, the scanpath sequences of
two different intra-conditions should be partitioned into two
distinct groups. We then cut the clustering tree by specifying
two clusters and reported the percentage of misclassification
of scanpaths for each condition.

Typical trial

To optimally represent and visualize eye-movement pat-
terns when performing a task, we identified the trial with
the most typical scanpath in each condition, which we re-
fer to as a “typical trial”. A typical scanpath pattern is
analogous to a prototype in the object-recognition research
field, which is a typical representation of a category of ob-
jects in which the classification is performed by calculating
the distance between the patterns and the prototype pattern
(Jain, Duin, & Mao, 2000). The typical scanpath pattern is
similar to the concept of an “average scanpath” in the field
of eye-tracking studies (Holmqvist et al., 2011b). Average
scanpaths were built to represent the behavior of the entire
group and to enable a comparison of scanpaths for differ-
ent conditions by visual inspection (Holmgqvist et al.,
2011b). Josephson and Holmes (2002) defined the average
scanpath as the scanpath with the greatest similarity to all
the other scanpaths. We followed this definition to build
the typical trials. We built the typical trials following the
steps later:

Step 1. For each condition, compute the similarity scores
between the scanpaths of one trial and each other trials in
the same condition.

Step 2. Calculate the mean similarity scores for each trial to
represent the degree of similarity between this trial and the
other trials.

Step 3. Select the trial with the highest mean similarity
score as the typical trial, and define it as the typical trial
in this condition.

Copyright © 2016 John Wiley & Sons, Ltd.
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DATASET 1

Dataset 1 is part of Su et al.’s (2013) eye-tracking study. In
their study, a novel comparative paradigm (the probability-
proportion task paradigm) was developed, in which the same
sign, “%”, denoted probability or proportion (Liang, Xu,
Rao, Jiang, & Li, 2012) to test whether risky choices are
based on a weighting and summing process. The published
data for this probability-proportion task paradigm were cho-
sen and analyzed in the present study. Su et al. (2013) hy-
pothesized that the proportion task is a baseline task in
which participants consciously make calculations using a
weighting and summing process. Su et al. (2013) speculated
that if people follow a weighting and summing process when
making risky choices, their information perception sequence
in the probability task should be similar to that in the propor-
tion task, which requires participants to integrate probability
and payoff information. However, if people do not follow a
weighting and summing process when making risky choices,
their information perception sequence in the probability task
should be different from that in the proportion task.

Fifty college students (27 females, M,,.=21.53) partici-
pated in Su et al.’s (2013) experiment. One participant was ex-
cluded from the analyses because of incomplete tracking data.
Eye movements were monitored with an EyeLink II tracker
(SR Research, Canada), with the eye position sampled at
250 Hz. Participants performed two tasks with an interval of
exactly 7days, and the task order was counterbalanced. In
the proportion task, they were asked to choose between riskless
options, each involving several partially available payoffs. In
the probability task, they were required to choose between
risky options, each involving several probabilistic payoffs.
The materials were visually identical to the symbol “x%”,
which indicated “You will get x% proportion of this payoff”
in the baseline task and “You will have an x% probability of
getting this payoff” in the probability task. Participants were
provided 32 pairs of two-payoff monetary options for each task
(Su et al., 2013, Appendix), and each time, they chose one
option. The presentation mode contained two presentation
patterns of the options (vertical and horizontal) and two po-
sitions of the payoffs relative to their respective probabili-
ties/proportions (outcome first vs probability/proportion
first; Su et al., 2013). To simplify the data analysis, we se-
lected the data in only one condition (i.e., horizontal presen-
tation, low level of computational difficulty, and outcome
presented first; see Supplementary Material A) to conduct
a scanpath analysis.

In accordance with Su et al.’s (2013) study, eight non-
overlapping, identically sized (218 x 156 pixels) rectangular
ROIs were defined. Four regions covered the payoffs of both
options, and four regions covered the probabilities or propor-
tions (Figure 3).

Results and discussion

Overall, 1187 of 108 661 fixations (approximately 1.09%)
with durations of less than 50 ms, and one trial (approxi-
mately 0.64%) of 1568 trials with a decision time of
shorter than 200ms were excluded from the analysis.
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Furthermore, 23 of 1568 trials (approximately 1.47%)
were discarded because of eye-tracking failures. We calcu-
lated the intra-condition and inter-condition similarity
scores separately for each participant. The descriptive sta-
tistics for intra-condition A (proportion task), the inter-
condition, and intra-condition B (probability task) are
shown in Figure 2.

To test whether participants used different cognitive pro-
cesses when performing different tasks, we applied a multi-
level model using the SAS program on the similarity score
with the intra-conditions/inter-conditions as the fixed factor
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Figure 2. Similarity scores of intra- and inter-conditions in the

proportion and probability task (a); outcome-matched and out-

come-crossed presentation conditions (b); single-play and multi-

ple-play conditions (c). The error bars represent standard errors
of the mean scores

Copyright © 2016 John Wiley & Sons, Ltd.

and the participant ID as the random factor. Unlike the tradi-
tional RM-ANOVA, the MLM takes the difference between
participants (level-1) and conditions (level-2) into account
and avoids overestimating the effect (Quené & Van den
Bergh, 2004). There was a significant difference between
the intra-conditions and inter-conditions (F(2, 96)=39.68;
p <.001). The correlation structure model was unstructured.
The Bonferroni adjustment was used for post-hoc pairwise
comparisons. Post-hoc analysis showed that the similarity
score for intra-condition A (M =.42, SE= .008) was signifi-
cantly higher than that for the inter-condition (M=.35,
SE=.008) (#(96)=28.89; adjusted p <.001). Moreover, the
similarity score for intra-condition B (M=.39, SE=.006)
was significantly higher than that for the inter-condition
(1(96)=4.98; adjusted p <.001). These results suggested
that the scanpath patterns differed between the proportion
and probability tasks. The results also showed that the sim-
ilarity score for intra-condition A was significantly different
from that for intra-condition B (#(96)=3.90; adjusted
p <.001), indicating that the internal consistency of the
scanpath pattern in the proportion task was higher than that
in the probability task.

To cross-validate the MLM results, the sequences of the
scanpaths of Conditions A and B for each participant were
clustered by complete linkage agglomerative hierarchical
clustering using the N—W algorithm to calculate the distance
(Fred, 2002). The average percentage of incorrect classifica-
tions of scanpaths for Condition A was 26.83% (SD=.17,
ranging between 0% and 48.39%), and that for Condition B
was 27.20% (SD=.19, ranging between 0% and 50.00%).
Consistent with the MLM results, this result indicated that
the scanpaths in the two conditions were separable, thus sug-
gesting that the scanpath patterns differed between the pro-
portion and probability tasks.

Figure 3 illustrates the scanpaths of the typical trial we
built for Conditions A and B. Along with the typical trial
(the one with the highest mean similarity score), the other
two trials with the second and third highest mean similarity
score for Conditions A and B were also built and are
depicted in Supplementary Material E to let readers judge
whether the representativeness of the typical trial can be
secured. The scanpaths of the typical trials showed that in
the proportion task, participants first scanned between the
“payoff” and “x%” within one option (option-based
scanpath) and then scanned within another option, after
which the scanpath pattern was repeated in the previous op-
tion. Upon inspecting the features of the typical trial, the
information-processing sequence in the proportion task ap-
pears to be more consistent with a weighting and summing
process. However, in the probability task, the scanpath did
not diagnostically show a pattern similar to that of the pro-
portion task.

Taken together, the results of the similarity score showed
that the scanpath pattern in the proportion pattern was differ-
ent from the probability task. Given that the participants must
employ a weighting and summing process to perform the
proportion task, our findings suggest that participants are un-
likely to employ a weighting and summing process to make a
decision in the probability task.
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Figure 3. Typical trials formed in the proportion (a) and probability
(b) tasks for Data Set 1. The arrows indicate the scanpath formed by
fixations; “m S” and “m E” represent the start and end of the
scanpth, respectively; the dotted boxes are the ROIs defined by us

DATASET 2

Dataset 2 is part of Wang and Li’s (2012) eye-tracking study.
In their study, an interesting paradigm contrasting two stim-
uli presentations, outcome-matched versus outcome-crossed
presentations, was developed to test whether risky choices
are ruled by an integrative model or a priority heuristic
model. In Wang and Li’s study, participants were provided
pairs of options, each containing two outcomes, that is, best
or worst. The position of the best/worst outcomes in both op-
tions was presented as either parallel (outcome-matched) or
crossed (outcome-crossed; Supplementary Material B). In
the present study, the scanpath analysis was directed to ana-
lyze the published data obtained from this paradigm. Wang
and Li (2012) proposed the following hypothesis: If risky
choices are based on an expectation (compensatory and
holistic) strategy, horizontal saccades (i.e., option-based
scanpaths) should remain unchanged regardless of whether
the stimuli presentation is outcome matched or outcome
crossed. However, if risky choices are based on a non-expec-
tation (non-compensatory and dimensional) strategy, for
example, the priority heuristic (Brandstitter et al., 2006) or
the equate-to-differentiate approach (S. Li, 2004), the attri-
bute-based scanpath between best/worst possible outcomes
(maximum/minimum outcomes) should occur in parallel
when the stimuli presentation is outcome matched but
crossed when the stimuli presentation is outcome crossed
(Supplementary Material B).

Copyright © 2016 John Wiley & Sons, Ltd.
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Fifty-two college students (26 females, M,,.=21.81) par-
ticipated in the study. Eye movements were monitored with
an EyeLink II tracker (SR Research, Canada), with the eye
position sampled at 250 Hz. Participants completed both the
outcome-matched and outcome-crossed condition for choos-
ing between two risky options. The order of tasks was
counterbalanced. The original study provided eight pairs of
two-payoff monetary options for each task, and the presenta-
tion mode included two levels, in which the probability and
outcome of one option was presented horizontally or verti-
cally (Wang & Li, 2012). For simplicity, we selected data
for only the horizontal presentation condition to perform a
scanpath analysis (Supplementary Material B).

In accordance with Wang and Li’s study, eight non-
overlapping, identically sized (187 x 129 pixels) rectangu-
lar ROIs were defined. Four regions covered the outcomes,
and four regions covered the probabilities (Figure 4).

Results and discussion

Overall, 956 of 46957 fixations (approximately 2.00%) with
durations less than 50 ms were excluded from the analysis.
The descriptive statistics for intra-condition A (outcome-
matched condition), the inter-condition and intra-condition
B (outcome-crossed condition) are shown in Figure 2.
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Figure 4. Typical trials formed in the outcome-matched (a) and

outcome-crossed (b) presentation conditions for Data Set 2. The

arrows indicate the scanpath formed by fixations; “# S~ and

“m E’represent the start and end of the scanpth, respectively; the
boxes are the ROIs defined by us
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The MLM results showed a significant difference in
the similarity scores between the intra-conditions and inter-
conditions (F(2, 102)=9.39, p<. 001). The correlation
structure model was unstructured. The Bonferroni adjustment
was used for post-hoc pairwise comparisons. Post-hoc analysis
showed that the similarity score of intra-condition A (M= .43,
SE=.006) was significantly higher than the similarity score of
the inter-condition (M = .40, SE=.008) (#(102) =4.28; adjusted
p <.001). The similarity score of intra-condition B (M= .42,
SE=.006) was significantly higher than the similarity score
of the inter-condition (#(102)=2.72; adjusted p=.02). The
results suggested that the scanpath patterns differed signifi-
cantly between the outcome-matched and outcome-crossed
presentation conditions.

The results of the clustering analysis indicated that the
scanpaths of Conditions A and B were separable. The aver-
age percentage of incorrect classifications of scanpaths was
35.44% (SD=.15, ranging between 0% and 53.85%) for
Condition A and 34.23% (SD=.17, ranging between 0 and
66.67%) for Condition B. Consistent with the MLM results,
the result suggested that the scanpath patterns differed
between the outcome-matched and outcome-crossed presen-
tation conditions.

The scanpaths of typical trials of each condition are
displayed in Figure 4. As in Dataset 1, trials with the first-
highest, second-highest, and third-highest mean similarity
score for Conditions A and B were also built and are depicted
in Supplementary Material E. The scanpaths of the typical
trials showed different patterns between the two conditions.
Notably, as predicted by the equate-to-differentiate approach
(Li & Xie, 2006), the scanpath between the best possible
outcome (¥ 6000) of Option A and the best possible outcome
(¥ 5700) of Option B and the scanpath between the worst
possible outcome (¥ 3000) of Option A and the worst
possible outcome (¥ 3500) of Option B were detected in
both outcome-matched (attribute-based scanpaths occur in
parallel) or outcome-crossed (attribute-based scanpaths
occur in crossed) conditions.

The results suggested that the scanpath patterns differed
between the outcome-matched and outcome-crossed presen-
tation conditions. The scanpath patterns observed in the typ-
ical trials were perfectly consistent with the prediction of the
equate-to-differentiate approach (S. Li, 2004; Li & Xie,
2006). An inspection of the scanpath patterns quickly leads
to the diagnostic conclusion that risky decision making is un-
likely to be based on the weighting and summing process.

DATASET 3

Dataset 3 is derived from Sun et al.’s (2014) eye-tracking
study. In their study, the classic Asian Disease Problem
(Tversky & Kahneman, 1981) was modified and tested in a
single-play condition and a multiple-play condition. The
eye-movement patterns in the multiple-play condition and
the single-play condition were contrasted to test which pat-
tern was more consistent with the predictions deduced from
the expectation computation. Sun et al.’s (2014) eye-tracking
study reasoned that the expectation-maximization rule works

Copyright © 2016 John Wiley & Sons, Ltd.

better in the multiple-play condition (S. Li, 2003; DeKay
et al., 2006; Lopes, 1981). If distinctly different eye-move-
ment patterns are detected in the single-play condition and
the multiple-play condition, then the risky choice in the sin-
gle-play condition is unlikely to be ruled by the expecta-
tion-maximization rule.

Forty-one college students (24 females, M,q.=22.25) par-
ticipated in the study. One participant was excluded from the
analyses because of incomplete tracking data. Eye movements
were recorded using an SR EyeLink 2000 tracker (SR
Research, Canada), with the eye position sampled at 2000 Hz.
After being presented with the scenario, participants were
asked to choose between a certain option and a higher-EV risky
option in the multiple-play condition (in which the selected
plan would be applied 100 times) or in the single-play condi-
tion (in which the selected plan would be applied only once).
The order of tasks was counterbalanced. The choice stimuli
were exactly the same between the two conditions, consisting
of 14 pairs of emergency plans (Supplementary Material C).

In accordance with Sun et al.’s study, six non-overlapping,
identically sized (230 x 202 pixels) rectangular ROIs were de-
fined. Three regions covered the outcomes, and three regions
covered the probabilities (Figure 5).

Results and discussion
Overall, 1223 of 33299 fixations (approximately 3.67%)
with durations of less than 50 ms were excluded from the
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Figure 5. Typical trials formed in the multiple-play (a) and single-

play (b) conditions for Data Set 3. The arrows indicate the scanpath
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analysis. Seven of 1120 trials (approximately 0.54%) were
discarded because of eye-tracking failures. The descriptive
statistics for intra-condition A (multiple-play condition), the
inter-condition, and intra-condition B (single-play condition)
are shown in Figure 2.

The results showed that there was a significant differ-
ence between the similarity score of the intra-conditions
and inter-conditions (F(2,78)=19.25; p <.001). The corre-
lation structure model was unstructured. A Bonferroni
adjustment was used for post-hoc pairwise comparisons.
Post-hoc analysis showed that the similarity score of
intra-condition A (M=.49, SE=.009) was significantly
higher than the similarity score of the inter-condition
(M=.44, SE=.009) (#(78)=5.84; adjusted p <.001). The
similarity score of intra-condition B (M=.48, SE=.008)
was significantly higher than the similarity score of the inter-
condition (#(78)=4.74; adjusted p <.001). These results
suggested that the scanpath patterns differed between the
multiple-play and single-play conditions.

The results of the clustering analysis indicated that the
scanpaths of Conditions A and B were separable. The aver-
age percentage of incorrect classifications of the scanpaths
was 31.74% (SD=.16, ranging between 0% and 50.00%)
for Condition A and 33.00% (SD=.16, ranging between
0% and 50.00%) for Condition B. The result indicated that
the scanpaths in the two conditions were separable, thus sug-
gesting that the scanpath patterns differed between the multi-
ple-play and single-play conditions.

The scanpaths of the typical trials of the two conditions
are displayed in Figure 5. Trials with the first-highest, sec-
ond-highest, and third-highest mean similarity score for Con-
ditions A and B were also built and are depicted in
Supplementary Material E. The scanpaths of the typical trials
in the single-play condition were different from those in the
multiple-play condition. In the multiple-play condition, par-
ticipants first scanned within the sure option and then
scanned within the risky option (option-based scanpath).
The scanpath pattern in the multiple-play condition was sim-
ilar to that in the proportion task in Dataset 1. However, in
the single task, the scanpath did not diagnostically show a
pattern similar to the multiple-task pattern.

The results revealed different scanpath patterns between
the single-play and multiple-play conditions, suggesting that
single-play risky choices are unlikely to be based on the
weighting and summing process. The conclusion of Sun
et al.’s (2014) study can be reached alternatively by simply
assessing a single index (either the typical scanpath pattern
or the similarity score).

GENERAL DISCUSSION

The present study successfully used scanpath analysis to ex-
amine risky decision-making models. Using scanpath analy-
sis, we re-examined the data in the eye-tracking studies of Su
et al. (2013), Wang and Li (2012), and Sun et al. (2014), in
which a proportion task, an outcome-matched presentation
condition, and multiple-play condition served as the baseline
for comparison with a probability task, an outcome-crossed

Copyright © 2016 John Wiley & Sons, Ltd.
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presentation condition, and single-play condition, respec-
tively. The results of the three datasets consistently revealed
that the similarity score within each condition was signifi-
cantly higher than that between the conditions. The current
research suggested that scanpath analysis has the potential
to be applied for testing risky decision-making models. The
results cross-validate earlier findings using a new method
for analyzing scanpaths. Given that scanpath analysis pro-
vides a global view for analyzing the decision-making pro-
cess, it is relatively safe to conclude that the weighting and
summing hypothesis does not appear to be able to account
for the processes of human risky preference.

Reliability and innovation of scanpath analysis in
judgment and decision making

The results of the current research suggest that scanpath anal-
ysis is a reliable tool for examining risky-decision models.
Process testing is vital for model examination (Schulte-
Mecklenbeck et al., 2011a). Scanpath analysis focuses on
the dynamical and holistic process and is therefore superior
to other methods that integrate the sequential and global in-
formation of the decision-making process. The logic of
scanpath analysis is that the difference between two tasks
can be measured by investigating whether the average simi-
larity score of the scanpaths for the intra-conditions is higher
than that for the inter-conditions (Mathot et al., 2012). In the
three datasets we chose, we consistently found significant
differences in the similarity scores between the inter-condi-
tions and intra-conditions, which revealed different cognitive
processes for each pair of tasks. Furthermore, we performed
robustness checks by varying the parameters for the N-W al-
gorithm to examine how they influenced the similarity score
(Supplementary Material D). We found that the use of a dif-
ferent parameter would influence the absolute value of the
similarity score but not the relationship between the intra-
conditions and inter-conditions. Finally, the results of the
clustering analyses for the sequences also revealed the reli-
ability of scanpath analysis; the sequences of scanpaths in
Conditions A and B could be correctly clustered into differ-
ent categories.

Scanpath analysis focuses on the sequence property of eye
movements and provides spatiotemporal data on the spatial
distribution of attention across a visual stimulus (Gbadamosi
& Zangemeister, 2001; Noton & Stark, 1971a, 1971b; Under-
wood, Humphrey, & Foulsham, 2008). These features of
scanpath analysis indicate that the analysis is not merely a sum-
mary of more specific measures routinely used in judgment
and decisionmaking (JDM); rather, it provides additional and
unique information. Suppose that when participants perform
two search tasks with the same stimuli, for instance, searching
from digits 1 to 9 and from digits 9 to 1, they have different
sequential cognitive processes. The traditional indexes, such
as the total number of fixations and the distribution of fixations
across different ROIs, might be the same for each task and
would thus fail to detect this difference. However, scanpaths
can accurately capture these different underlying cognitive
processes. Compared with traditional indexes, the scanpath is
likely more sensitive to the differences between decision tasks.
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Decision-making models have assumed a sequential infor-
mation seeking and evaluation process. The three previous
studies (Su et al., 2013; Sun et al., 2014; Wang & Li,
2012) found differences only in the direction, depth, and
complexity level of information processing between the
conditions. Compared with previous research, the present
findings are novel and important for better understanding
the underlying cognitive process.

The present study identified a typical trial and provided a
visualization of the decision-making process. To our knowl-
edge, no attempt has previously been made to visualize the
“prototype” of a decision-making process. The typical trial
developed in the present study may serve as a promising can-
didate for such a role. Using typical trials, researchers can di-
rectly inspect decision-making processes across different
conditions. Based on the inspection of typical trials in three
datasets, we can directly observe that the option-based
scanpath, which is predicted by the expectation-maximiza-
tion rule, frequently occurs when participants make decisions
in the proportion task and the multiple-play condition. In
contrast, the attribute-based scanpath frequently occurs when
participants make decisions during single-play preferential
choices. Moreover, different segments of the scanpath might
reflect different processes during decision making. A closer
observation revealed that the option-based and attribute-
based scanpaths seem to occur in the “evaluation” process
defined by Russo and Leclerc (1994), which is characterized
by the scanpath comprising re-fixation between two ROIs.
Considering that a majority of the decision “work™ occurs
during the evaluation process (Glaholt & Reingold, 2011;
Russo & Leclerc, 1994), the different scanpaths observed
in the evaluation process are more likely to reflect the key
divergence in the decision-making process.

In the present study, we contribute several innovations to
the application of scanpath analysis in JDM research. First,
we developed and validated a simple but sensitive analytical
procedure for scanpath analysis in testing decision-making
models, where the step-by-step procedure is potentially stan-
dardized in terms of algorithm selection, parameter combina-
tion based on the principle of parsimony, and typical trial
identification. In this way, we also overcome the limitation
of applying a similarity score, that is, that it is difficult to
choose an appropriate relative weighting for each parameter
(Mathét et al., 2012). Without a standardized step-by-step
procedure, the absolute values of similarity scores obtained
from different studies that used different parameters cannot
be directly compared and evaluated. The results of our ro-
bustness checks suggest that it is safe to calculate a reliable
similarity score if the present analytical procedure for
scanpath analysis is employed and that such a potentially
standardized procedure may provide a simple, validated,
and methodological standard to generalize the finding in
future decision-making studies. Second, we defined the rela-
tionship of ROIs based on the attribute of option, which
makes the method more appropriate for decision-making re-
search. It can be seen that scanpath analysis is traditionally
used in visual-based tasks (e.g., reading and viewing natural
scenes), with the logic relationships between ROIs being
principally based on spatial considerations. Meanwhile, in
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risky decision-making tasks, the logic relationships between
ROIs are based on not only spatial considerations but also
the scan orders between different attributes (e.g., probability
or outcome) or between options, which are presumably ruled
by different decision strategies. In the latter case, the
scanpaths between the same attributes or options might be
calculated differently depending on their positions. The
cross-validation of the findings from our study using
scanpath analysis and the previous studies using conven-
tional analysis (Su et al., 2013; Sun et al., 2014; Wang &
Li, 2012) indicated the validity of defining the relationship
of ROIs based on attributes.

Scanpath analysis for examining risky-decision models
Compared with the traditional analytical methods of eye
tracking, utilizing scanpath analysis to examine models of
risky decision-making has unique merits. First, no specific
hypothesis on the local details of eye movements is required,
particularly for research attempting to determine whether two
processes differ. Based on the pattern generated by the
scanpath (Norman & Schulte-Mecklenbeck, 2010), we can
investigate the process of risky choice from a global perspec-
tive. Unlike in previous eye-tracking studies, we do not need
to develop specific hypotheses regarding the local detail of
eye movements (Glockner & Herbold, 2011; Su et al.,
2013). Second, scanpaths are free from the presentation of
stimuli. The results derived by traditional eye-tracking anal-
ysis are subject to the “presentation effect” (Shieh, Hsu, &
Lin, 2005). That is, the presentation modes of stimuli inter-
fere with the eye-movement results. According to scanpath
theory, cognitive models are assumed to control the eye-
movement scanpath (Noton & Stark, 1971a, 1971b). The in-
fluence of stimulus presentation on scanpath analysis is
therefore relatively small.

Specifically, scanpath analysis simplifies the process of
model testing. Numerous theories have been developed to
reconcile violations of the expectation-maximization rule
with experimental data and demonstrate that with the trans-
formation of outcomes or of outcome probabilities, the
expectation-maximization rule is applicable to risky choices.
When the Allais paradox (Allais, 1953) questioned the max-
imization assumption in risky decision making, expectation-
maximization proponents argued that any definite rule for
choosing between risky prospects could be described as a
maximization of some function. Therefore, the issue is not
whether choice can be described as a maximization but rather
which function is being maximized (for a more detailed argu-
ment, see S. Li, 1996). Using scanpath analysis, we were
able to test the core expectation-maximization rule directly
rather than testing which function (e.g., rank-dependent and
sign-dependent or not) with which parameter (e.g., 6=0.31,
0.61, and 0.91 in the inverse S-shaped weighting function
of cumulative prospect theory (Tversky & Kahneman,
1992)) is being maximized. Expectation-based risky-decision
models hypothesize a single well-defined decision-making
strategy (e.g., Pascal, 1670; von Neumann & Morgenstern,
1947; Kahneman & Tversky, 1979). However, our results in-
dicate that the internal consistency of the scanpath pattern in
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the proportion task (i.e., performing an expectation computa-
tion is definitely required) is higher than that in the probabil-
ity task, implying that decision-makers may adopt a
relatively flexible strategy in making risky choices rather
than using a single strategy, as prescribed by the family of
expectation models.

Moreover, a potential “rule-specific” contribution of
scanpath analysis is its utilization to evaluate the degree of
consistency of the internal patterns of decision tasks and
therefore to examine the deterministic/stochastic decision
rule. At present, we can note that a specific eye-movement
pattern has been utilized to investigate the compensatory/
non-compensatory and holistic/dimensional rule underlying
the decision-making process. For example, a saccade be-
tween an outcome and its probability is required for a
weighting process, whereas a saccade between the outcomes
of two options is an index indicating a dimensional process.
To our knowledge, however, no eye-movement pattern has
been identified as satisfactorily usable to examine the deter-
ministic/stochastic rule. As the likelihood that a determinis-
tic/stochastic rule will be employed by a decision maker
increases, the similarity score that would be derived from
the decision maker increases/decreases; therefore, the simi-
larity score developed in this paper might serve as a useful
index for testing whether making a risky choice is based on
a stochastic process. The analysis of Su et al.’s (2013) data,
which indicated that the intra-condition similarity score for
the proportion task (which definitely requires a deterministic
rather than a stochastic strategy) was significantly higher
than that of the probability task, supports this possibility.

Prospects and limitations
Scanpath analysis has been successfully used in applied
research to examine individuals’ search-process patterns
and decision strategies (Bradley et al., 2011; Day, 2010;
Engbert & Kliegl, 2001; Ni et al., 2011; Pieters et al.,
1999). It is worth attempting to use scanpath analysis to
examine decision-making models in fields other than risky
decision making (e.g., decision making under uncertainty
and intertemporal choice) to provide new evidence for the
mechanisms of decision making. Scanpath analysis might
also be a good candidate for studying decision making based
on strategies, including experience-based decision making
(Glockner, Fiedler, Hochman, Ayal, & Hilbig, 2012; Yechiam
& Busemeyer, 2005), web-based decision making (Ehmke &
Wilson, 2007), and decision making in extreme environments,
such as emergencies (Sun et al., 2014), space flight (Bock,
Weigelt, & Bloomberg, 2010; Rao, Jiang, Liang, Zhou, &
Li, 2014), and simulated microgravity (Jiang et al., 2013).
This study can surely be improved because it suffers from
some limitations. First, the similarity between two tasks is
measured by the similarity score in scanpath analysis. It is
difficult to evaluate the meaning of an absolute similarity
score within a task. Second, the core features of the typical
trial were heavily based on the direct observation of the
scanpath pattern. To generalize the result based on a typical
trial, proper statistical analysis is needed in future research.
Finally, although the similarity score might serve as a
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promising index for testing the process hypothesized by
DDM, DFT, and other models based on stochastic informa-
tion accumulation, it is still not clear how such an index
can be utilized appropriately because these models ultimately
did not yield an explicit and precise prediction regarding se-
quential information processing.

In summary, the present study verified that scanpath anal-
ysis is reliable and valid for examining the process of risky
decision-making models. The typical scanpath pattern we
developed can visualize the diagnostic crux of a decision-
making process and allow the direct and rapid inspection of
whether two decision-making processes differ. Given that
scanpath analysis is a non-invasive method for examining
the decision-making process, it is a good candidate for appli-
cation in decision-making research.
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